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Abstract-The axisymmetric temperature distribution on the surface of a contacting body is inferred
from a knowledge of the difference in the electric potential distributions on the two faces of a
piezothermoelastic "sensor". The sensor consists of a finite circular disk with hexagonal structure
of class 6 mm, having its cylindrical boundary constrained by a rigid, thermally insulated, electrically
charge-free ring. The inverse problem is solved using a potential function approach that makes use
of three displacement potentials and two electric potentials. Numerical results for a cadmium
selenide sensor illustrate the effects of the distribution of the measured electric potential difference
and the thickness of the disk upon the heating temperature, elastic displacements, stresses and
electric displacements. (~~ 1997 Elsevier Science Ltd.

INTRODUCTION

Piezoelectric materials have been employed in a variety of engineering applications, includ­
ing ultrasonic transducers and electromechanical actuators, Recently, interest has focused
on the use of piezothermoelastic materials as sensors and actuators in smart structural
systems undergoing thermomechanical excitations, The usefulness of piezoelectric devices
in such systems stems from the coupling that exists between the thermoelastic and electric
fields, In sensor applications, thermomechanical disturbances can be determined from
measurements of the induced electric potential differences (direct piezoelectric effect) ; in
actuator applications, deformation and/or stress are controlled through the introduction
of an appropriate electric field (converse piezo effect),

Whereas most investigations on piezoelasticity have considered isothermal behaviors, a
few studies have considered nonisothermal response. Noteworthy are the works of Tiersten
(1971), who derived nonlinear equations of thermoelectroelasticity, and Chandrasekharaiah
(1988), who developed a generalized linear piezothermoelastic formulation. The present
authors proposed a general solution technique for three-dimensional problems of pie­
zothermoelastic hexagonal solids of class 6 mm in cartesian coordinates (Ashida et at.,
1994a) and for a two-dimensional problem of an orthotropic plate exhibiting crystal class
2 mm (Ashida et at., 1994b). Also, a solution to asymmetric problems in cylindrical
coordinates was developed (Ashida et at., 1994c) and the response of an infinite piezoelectric
plate subject to axisymmetric heating was investigated (Ashida et at., 1993). In the present
paper we examine the response of a finite circular disk, one face of which is in contact with
a heated body. The inverse problem is solved to determine the surface temperature when
the electric potential difference between the surfaces of the disk is prescribed, Numerical
results illustrate the effects of the distribution of the electric potential difference and
the disk thickness on the heating temperature, elastic displacements, stresses and electric
displacements.
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GOVERNING EQUAnONS

Consider the axisymmetric response of a piezothermoelastic solid of crystal class
6 mm. The constitutive relations for the elastic field, expressed in cylindrical coordinates,
are

(1)

in which (Jij are the stress components, Cit are the strain components, £, are the electric field
intensities, T denotes the temperature rise, cit are elastic stiffnesses, e i are piezoelectric
constants and fJi are stress-temperature coefficients. The strains are related to the dis­
placements Ui as follows:

(2)

The constitutive equations for the electric field are

(3)

where D i are the electric displacement components, Yfi are dielectric permitivities and P3 is
the pyroelectric constant.

The equations of equilibrium are

(4)

and the equation of electrostatics is

I
Dr.r+Do.: + -Dr = 0

r

while the equation governing stationary heat conduction is

where

(5)

(6)

(7)

in which I' i are coefficients of heat conduction. For the problem considered here it is
convenient to represent the temperature as the sum of two functions, namely

(8)

SOLUTION PROCEDURE

In a previous investigation (Ashida et al., 1993), the authors presented a method of
solution applicable in the case of the temperature field T] Cr, z). The formulation entails a
piezothermoelastic potential function C¢), three piezoelastic potential functions (1jJ" i = 1-
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3) and an electric potential (<1>1)' We introduce here an additional piezothermoelastic
potential ('Po(z)) and an electric potential (<1>o(z)) associated with the one-dimensional
temperature field To(z). The displacements and electric field intensities are related to these
potential functions through the relations

(9)

and

( 10)

where (Ashida ct al., 1993)

(11)

(12)

(13)

and

(14)

(15)

(16)

The equations of equilibrium (4) and electrostatics (5) are then satisfied, providing the
potential functions ¢ and l/Ji satisfy the equations (see Ashida et al., 1993)

and

(18)

The coefficients appearing in eqns (9)~(l8) are given by

f33'11- e1P1
"r'l =--'---

('>1'13 +c~

. klv~c'l cI,(e1-'1e4)
1 = k I - + -----"---'------
. C44 (e, +e4Hc44+dl'1l)

C"P3 + {33 e3
~/2 =

C33'13 +d

6
0

= (el +C4)[k, V2(C44+dl'1I)f31 -C44 ({33 -=P3 e4/1] , )]

• CI I [(C44 +d/I]] Hel +c4)k l V2 -C44(Cl-l]e4)]

(19)
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where VI and V2 are roots of the equation

(20)

and Ji], 112 and Ji3 are roots of

Ji3-(V I +v2+'1-a2~2)Ji2+[vIV2+'1(Vj +V2)-(vla2+b2)~I-al~I~2]Ji

-'1VIV2+Vlb2(2+bl(I(2 =0 (21)

in which

kjc, CI+(1+})C4
b j = --", a2 = ----'-----"-'--

'11 '11
(22)

INVERSE PROBLEM FOR PIEZOTHERMOELASTIC SENSOR

Consider a circular piezothermoelastic disk (Fig. I ) having one face in contact with a
heated body. We wish to determine the temperature distribution T(r, b) = B(r) on the
surface of the contacting body, from a knowledge of the difference in the electric potential
across the faces of the disk. The cylindrical boundary of the disk is constrained by a
rigid, thermally insulated and electrically charge-free ring. For this situation the boundary
conditions are taken to be

T= 0 on z = -b

T r = Ur = Dr = 0 on r = a.

It is presumed that a potential difference of the form

(23)

(24)

(25)

(26)

is measured, where Vo is a constant having dimension ofelectric potential and v(r) describes
the radial variation of the potential difference.

A general solution to the heat conduction eqn (6) is

z

•

b
"--r
b

rigid ring piezoelectric disk
Fig. 1. Piezoelectric sensor.
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(27)

in which An and BI1 (n = O-co) are unknown coefficients. Note, for consistency with eqn
(8), To = Ao+BoZ, while T j constitutes the infinite series in eqn (27).

Edge condition T r = 0 on r = a is satisfied providing rxna are roots of

(28)

By substituting T 1 into eqn (17), the piezothermoelastic potential function ¢ is found
to be

(29)

where

The piezoelastic potentials 1jJ" which represent solutions to eqn (18), are

1jJ,= i JO(rxnr) [Kin cosh CJ.~Z +Lin sinh ':1.
1:-J (i= 1-3)

11=1 ylll .Jill

(30)

(31 )

where Kin and Lin are unknown coefficients. The displacement function 'PI. obtained by
substituting eqns (29) and (31) into (11), then becomes

(32)

Likewise, substitution of To into eqn (12) leads to

(33)

whereas substitution of T 1 and 'P] into eqn (13) yields

x {[ rxnz . rxnzJ'Pc = L Jo(rxnr) F2n An cosh-,~ +Bnslllh-,-
n=1 I~)~

3 [ ':1.nZ . rxnz J}+ .~ (t , - I) Kin cosh ! + L,n slllh !
1- I V III v'1l1

where

(34)
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The electric potentials <Do and <Db found by substituting To and T j into egns (15) and
(16), become, after integration

(36)

and

(37)

in which

(38)

Substitution of egns (32)~(34), (36) and (37) into (9), (10), (2), (I) and (3) yields,
respectively, the following expressions for the displacements, electric field intensities, stresses
and electric displacements:

~ in i [ . an:: anz l}+.::.. r- K lI1 smh ! + Lin cosh !
1- I -J Ili V Ili Y Ili

(39)

(40)

(41)

(42)
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[
~z . ~ZJ}x Kill cosh j- +Lill smh i .

V Il, V Ili
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(43)

(44)

(45)

(46)

(47)

[ ~Z . ~ZJ}
X Kill cosh / . + Lin smh i .

V 11, V Ili
(48)
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The 8n+2 unknown coefficients (Ao,Bo,An,Bn,Kin,K2n,K3n,Lin,L2n and L 3n) (n = 1­
00) in these equations are determined through application of the boundary conditions.
Conditions (25) are identically satisfied by expressions (27), (39) and (47). Condition (23)
requires that

(49)

The boundary conditions (24) governing the stresses (J,: and (J:: and electric displacement
D:, imply, respectively,

(50)

(51 )

and

(52)

Furthermore, expressing the radial variation vCr) of the electric potential (see eqn (26» as

,%

vCr) = Vo + L vnJo(rxnr)
n=1

where

(53)

2 faV = - rver) dr
(), '

a~ °

then condition (26) requires that

(54)

(55)

Equations (49)-(52) and (55) are sufficient to determine all unknown coefficients in the



Temperature determination for a contacting body 2557

solution. Substitution of coefficients An and Bn (n = 0-00) into eqn (27) then yields the
desired heating temperature distribution

(56)

NUMERICAL EXAMPLE

As an il1ustrative example, it is assumed that the measured electric potential difference
[<I>L~h- [<I>L~ -h across the piezoelectric sensor has a distribution described by

(57)

in which f is a specified parameter. The sensor material is considered to be cadmium
selenide, having the fol1owing properties (Berlincourt et al., 1963) :

C II = 74.1 X 109 Nm -2, CI2 = 45.2 X 109 Nm -2, C l 3 = 39.3 X 109 Nm -2,

C}j = 83.6x 109 Nm- 2
'C44 = 13.2x 109 Nm- 2

,

f31 = 0.621 X 106 NK- ' m- 2,f33 = 0.551 x 106 NK -I m- 2
,

e l = -0.160Cm- 2
,e3 =0.347Cm- 2

,e4 = -0.138Cm- 2
,

Yf I = 82.6 x 10- I 2 C2 N - I m - 2 , Yf 3 = 90.3 x 10 - I 2 C 2 N - I m- 2 ,

P3 = -2.94 X 10- 6 CK- 1 m- 2
, Y,. = 42.8 X 109 Nm- 2

,

rJ. r =4.4xlO- 6 K- I ,dl = -3.92xlO- 12 CN- I (58)

where Yr is Young's modulus, rJ. r is the coefficient of linear thermal expansion and d l is the
piezoelectric coefficient. Since the values of the coefficients of heat conduction for cadmium
selenide could not be found in the literature, the value ;,2 = kl}'r = 1.5 is assumed. For this
material, the roots of eqns (20) and (21) are

VI = 0.3405, V2 = 3.2334

/11 = 0.2987, /12 = 1.4490, /13 = 2.8452. (59)

For convenience in presentation of numerical results, the fol1owing dimensionless
quantities are introduced:

- h
h =-.

a

r
f=­

a'
Z= ~,

a

U

iii = Id , I' V
O

'

_ a(5,/ _ <I>
(5,/ = I d, I YrV

O
' <I> = V-;'

_ aD,
D=----, df y,vo .

(60)

Response quantities were calculated by retaining the first 50 terms in each of the
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Fig. 2. Distributions of electric potential for different values of parameter/; h- = 0.1.
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Fig. 3. Distributions of inferred surface temperature for different values of parameter/; fi = O. I.

corresponding infinite series. Figure 2 shows the nondimensionalized electric potential
difference across a disk of thickness fj = 0.1, for various values of the parameter f The
corresponding inferred temperature distributions e(r) are shown in Fig. 3. Note that a
uniform measured potential difference [<I>]=~I>- [<I>b~ -I> = -I (case of f= 0) implies a
constant surface temperature e. In dimensional terms, it follows that a uniform potential
difference Vo = I volt across a disk of thickness 2b = 2 mm, for example. implies a tem­
perature rise e = 0.141 K.

Figures 4-6 show the associated distributions of elastic displacements, stresses and
electric displacements for this example. For the constant temperature case (f = 0) it is
found that fir = 15, = O. while the quantities fie, 0-" and 0-00 are independent of f.

The influence of sensor thickness fj on the inferred surface temperature, displacements,
stresses and radial electric displacement is shown in Figs 7-10. The radial elastic displace­
ment, as well as the radial and circumferential stresses on the bottom surface are not
plotted, since their values are negligibly small compared with the corresponding upper
surface values. For a given amplitude Vo of electric potential, the thinner the disk (smaller
fj), the larger the associated (absolute) values of e, fico o-rr and 0-00 on the upper surface.

The results obtained here indicate that piezoelectric materials can indeed be utilized to
measure surface temperature distributions, providing further evidence that piezoelectric
elements can be used effectively in intelligent structural systems.



Temperature determination for a contacting body

3oo,---------------,

2559

---- [uzlz=b-[ UZ]Z=-b
f~Q _

6 = 0.1---- --------------
f = 0.75

f =0.25200 - - - - - - - - - - - _

f = 0.5

l:::::l

N

l:::::l

-------- ---
f=1 -------_

100 ---- __ ---

o0~~~0~.2:::::=;0:.4==0~.6:::=L~0::.8~_~1
r

Fig. 4. Distributions of radial and axial displacements for different values ofparameterf: h = 0.1.
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Fig. 5. Distributions of radial and circumferential stresses for different values of parameter f:
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Fig. 7. Effect of sensor thickness Ii on inferred temperature;f = 1.
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Fig. 10. Effect of sensor thickness [j on radial electric displacement;f = l.
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